Zasada działania przecinarek plazmowych

Ocena użytkowników:  / 0

Cześć
Przecinarki plazmowe na dobre zadomowiły się w wielu warsztatach. Duży wpływ ma na to spadek ceny przecinarek plazmowych i nadzwyczaj tanie materiały eksploatacyjne sprowadzany z Chin.
Warto mieć pojęcie jak działają przecinarki, jakie są ich zalety i jakie wady.

Plazma to zjonizowany gaz o wysokiej temperaturze, w przypadku przecinarek wydostający się z znaczną prędkością z uchwytu przecinarki. Gaz staje się plazmą gdy energia ruchu kinetycznego cząstek będzie na tyle wielka, że elektrony przezwyciężają energię wiązania cząsteczkowego i odrywają się od niej pozostawiając ją w stanie zjonizowania. Natomiast same stają się wolnymi nośnikami prądu i przestają być obojętne. Można powiedzieć, że powstaje wtedy materia będąca po części gazem i po części materią o bardzo wysokiej temperaturze.
Na kuli ziemskiej plazmę można zaobserwować na biegunach jako zorza polarna lub w czasie burzy jako pioruny w tym pioruny kuliste, poza tymi zjawiskami plazma na ziemi nie występuje. Jednak, co ciekawe, im dalej od naszej planety, tym więcej odkrywamy materii w stanie plazmy. Szacuje się, że w stanie plazmy jest 99,9 % materii wszechświata.
Większość dotychczasowych zastosowań plazmy wiąże się z wysoką temperaturą i przewodnictwem elektrycznym. W inżynierii źródłami plazmy do zastosowań w spawalnictwie są generatory plazmy ( plazmotrony). Wytwarzają i podtrzymują one plazmę poprzez nagrzanie gazu przepływającego przez uchwyt, w którym pali się łuk elektryczny o dużym natężeniu prądu. Z tego powodu przecinarki plazmowe muszą być podłączone do sprężarki tłokowej podającej sprężone powietrze pod ciśnieniem około 4-5 bar. Jest to technika plazmy łukowej. Składa się z 2 etapów, zainicjowania łuku i utrzymywania go przez przepływający przez zjonizowany gaz - plazmę, prądu elektrycznego.

Warto nadmienić, że oprócz spawalnictwa generatory plazmy są stosowane do nanoszenia cienkich warstw i realizowania szeregu reakcji przy użyciu plazmy w obniżonym ciśnieniu np. PECVD. Służą one do takich zaawansowanych aplikacji jak wzrost diamentów, nanoszenie lub trawienie nano warstwy, kształtowanie nowych materiałów jak przykładowe HBLED (High Brightness Light-Emitting Diode) czyli produkowanie nowej generacji diod LED wykorzystywanych jako innowacyjne źródła światła o dużej sprawności.

Wracając do tematu.

Cięcie plazmą (cięcie plazmowe) polega na topieniu i usuwaniu metalu ze szczeliny cięcia silnie skoncentrowanym plazmowym łukiem elektrycznym o dużej energii kinetycznej, jarzącym się między elektrodą nietopliwą ( umieszczoną w uchwycie plazmy) a ciętym materiałem. Plazma inicjowana jest przez potarcie lub zbliżenie palnika do ciętego materiału. Przepuszczanie strumienia sprężonego gazu przez zapoczątkowany łuk elektryczny powoduje jego podtrzymanie i wtórną jonizację i dzięki dużemu zagęszczeniu mocy wytwarza się strumień plazmy. Kluczowe jest tu skupienie plazmy przez szczelinę dyszy, powoduje to wytworzenie zbitego strumienia plazmy rzędu milimetra. Warunkiem więc jest tu podłączenie do materiału ciętego przewodzącego prąd masy.


Jak wspomniałem dysza plazmy zamontowana w palniku ogniskuje łuk plazmowy. Schładzane przez pierścień zawirowania ścianki dyszy powodują zawężanie kolumny łuku. Zasada działania cięcia plazmą wykorzystuje wysoką temperaturę w jądrze łuku plazmowego (10000÷30000K) i bardzo dużą szybkość strumienia plazmy, co powoduje, że cięty materiał jest topiony, utleniany i wyrzucany ze szczeliny. Szczeliny są znacznie mniejsze niż przy cięciu acetylenem, mają też znacznie równiejszą powierzchnię.
Powszechnie wykorzystywanym gazem plazmotwórczym jest jak nadmieniłem powyżej powietrze podawane z sprężarki tłokowej. Warto oczywiście oczyścić takie powietrze stosując najprostszy filtr. Przecinarką plazmową można ciąć każde materiały przewodzące prąd elektryczny - wykonanych ze stali węglowych i stopowych, kwasoodpornych, aluminium i jego stopów, mosiądzu, miedzi oraz żeliwa, nawet jeśli powierzchnia jest pokryta farbą lub grubą warstwą rdzy.

Przecinarka plazmowa - https://domtechniczny24.pl/przecinarki-plazmowe.html

Zasady bezpiecznej pracy w czasie cięcia Plazmą.
Oprócz podstawowych zasad cięcia łukiem elektrycznym - duża temperatura, duże ilości szkodliwych gazów, warto wiedzieć o tym czego nie widać.
Plazma wytwarza znaczne ilości promieniowania UV, trzeba zatem wykorzystywać odzierz ochronną i okulary lub maski całotwarzowe z filtrem UV.
Ponieważ przez przewód uchwytu plazmy płynie prąd tworzący silne pole elektromagnetyczne nie zaleca się owijania przewodu wokół szyi lub w inny sposób.
i to w zasadzie wszystko, pozdrawiam Rafał.

Spawanie drutem samoosłonowym

Ocena użytkowników:  / 1

Mając spawarkę MIG z zmienną polaryzacją można używać drutu rdzeniowego samoosłonowego, bez konieczności podawania gazu osłonowego.
Kiswel jest drutem rdzeniowym samoosłonowym (metoda FCAW-SS).

Topniki znajdujące się w rdzeniu drutu, podczas spawania wytwarzają gazy oraz żużel osłaniające jeziorko i gorący zakrzepnięty metal spoiny. Spawanie drutem Kiswed odbywa się bez użycia gazu osłonowego. Kiswel jest drutem rdzeniowym samoosłonowym (metoda FCAW-SS). Topniki znajdujące się w rdzeniu drutu, podczas spawania wytwarzają gazy oraz żużel osłaniające jeziorko i gorący zakrzepnięty metal spoiny.

Zalety: nie ma konieczności podania gazu osłonowego :)

Wadą tej metody jest: Posiadanie spawarki z możliwością zamiany biegunów.

Drogi drut samoosłonowy  44 zł za kilo. Choć pojawiły się również tańsze na r

Trudność w spawaniu - inna technika niż MIg Mag

Powstaje spoina z żużlem na wierzchu, trzeba go mechanicznie usunąć.

Aby była możliwość spawania takim drutem spawarka musi mieć możliwość zmiany polaryzacji (tzn. trzeba mieć minus na uchwycie a plus na masie)
Uchwyt prowadzi się także jak w spawaniu elektrodą MMA - "ciągniemy spaw" a nie "pchamy".
Coś jak na rysunku

Dla przykładu metoda Mig z gazem :)

Oznakowane butli z gazmi spawalniczymi

Ocena użytkowników:  / 2

Mieszanka Argonu i Co2 do spawania metodą MIG MAG

Butla z Azotem 8l

Butla z argonem 8litrów czystość 99,998%

Druty do drukarek 3D

Ocena użytkowników:  / 0

Witam
Technologia drukowania FDM bazuje na tworzeniu modeli z tworzyw podawanych z ekstrudera w postaci drutu o średnicy 1.75mm lub 3mm, na płytę modelową.
Sposób działania jest analogiczny jak w drukarkach atramentowych. Głowica z dyszą podaje materiał bazowy - podporowy i przemieszcza sie w płaszczyźnie X Y. Naniesiony materiał o określonej grubości (o tym później) zastyga w kilka sekund. Następnie głowica lub stół modelarski przesuwa się w płaszczyźnie Z i nakładana jest nowa warstwa w płaszczyznach X Y.
Drut do drukarek 3D nazywany jest filamentem. Jakość wydruku w decydującej mierze zależy, od jakości filamentu. Wszystkie zanieczyszczenia, nierówności powierzchni czy wilgotność oddziałują niekorzystnie na wytrzymałość i powierzchnię drukowanego modelu. W ( technice FDM|drukarce} filament podawany jest w sposób ciągły do ekstrudera, w którym filament jest uplastyczniony do temperatury 170-250 stopni i pod ciśnieniem wystrzeliwany przez dyszę drukującą. Drukarki 3D drukują w jednym kolorze takim jak filament. Zależnie od drukarek minimalne grubości drukowanej ścianki mogą wynosić od 0,1mm do 0,6mm. Grubość nakładanej powłoki waha się od 0,1mm do 0,01mm i jest wprost proporcjonalny do prędkości drukowania.

Filamenty dla drukarek 3d

Rodzaje filamentów.
W praktyce korzysta się z dwóch rodzajów materiałów termoplastycznych ABS i PLA. Aczkolwiek technologia FDM pozwala na wykorzystywanie innych tworzyw takich jak nylon, PVA, poliwęglan, polietylen, Laywood - tworzywo z dodatkiem drewna..
ABS (akrylo-butylo-styren) to szeroko rozpowszechnione tworzywo. Wykorzystywane min. w przemyśle motoryzacyjnym, AGD i RTV. Jest nieodporne na agresywne rozpuszczalniki organiczne np. Aceton. ABS ma dobre właściwości mechaniczne, jest odporny na uderzenia, jego gęstość wynosi około 1.05 g/cm3. Rekomendowana temperatura druku to 230-250 °C i co jest bardzo istotne wymaga podgrzewanego stołu modelowego, z tego powodu niepopularny w amatorskich drukarkach.
PLA jest znacznie twardszy, gęstość 1.25 g/cm3 i przez to bardziej kruchy, szczególnie w niskich temperaturach. Ciekawą właściwością PLA jest jego biodegradowalność. Tworzywo posiada niską temperaturę druku około 170-190 °C. Przez to może być używane w tańszych modelach bez podgrzewanego stołu.
Pozdrawiam

Gazy techniczne stosowane w spawaniu

Ocena użytkowników:  / 1

Charakterystyka gazów technicznych stosowanych w spawalnictwie.

Cześć
Dzisiejszy artykuł będzie obejmował zagadnienie stosowania gazów technicznych w spawalnictwie, do lutowania, w technice warsztatowej. Gazy te można podzielić na gazy osłonowe, atmosferyczne i gazy palne.

Do gazów palnych zaliczamy Acetylen, tlen, propan, butan, wodór.
Gazy te lub ich mieszanki podczas spalania dostarczają wysoką temperaturę stosowaną do topienia, cięcia i podgrzewania metali.

Acetylen.
Jest gazem wytwarzanym podczas reakcji karbidu z wodą. Acetylen podczas spalania wytwarza najwyższą temperaturę spośród wszystkich gazów przemysłowych. Jest najbardziej wydajny, aczkolwiek jego wartość kaloryczną nie jest wysoka, to w strefie środkowego płomienia emituje bardzo wysoką i skoncentrowaną temperaturę. Do kompletnego spalenia się potrzebuje niewielkie ilości tlenu, dzięki temu płomień zawiera śladowe ilości wilgoci. Spalając się generuje płomień, który nie utlenia obszaru spawanego czy powierzchni lutowanych. Ta cecha sprawia, że powierzchnie nie zawierają tlenków, idealnie nadaje się więc do grzania punktowego, lutowania twardego, spawania i cięcia. Ze powodu tego że acetylen jest lżejszy od powietrza, jest jedynym gazem palnym zalecanym do użytku w pod ziemią.
Gaz ten przechowywany jest w stalowych, bezszwowych butlach pod ciśnieniem 1,5MPa, wypełnionych masą porowatą i acetonem, w którym jest częściowo rozpuszczony.
Butle acetylenowe są malowane na kolor kasztanowy. Gaz do palnika podawany jest przez specjalnyreduktor acetylenowy, który obniża ciśnienie do wartości roboczej. Oprócz reduktorów stosuje się również bezpieczniki. Bezpiecznik do acetylenu ma zawór zwrotny, który zapobiega przepływowi gazu w kierunku przeciwnym do zwyczajnego. Oraz blokadę płomieniową, która studzi płomień i go wygasza. Bezpieczniki umieszcza się przeważnie na palniku i przy uchwycie.

Tlen, gaz bezwonny i bezbarwny.
Gaz nieodzowny w procesie spalania, cechuje się dużą reaktywnością i z tego powodu w procesach spawania czy lutowania powietrze jest mieszane z tlenem. Dodatek tlenu podwyższa temperaturę spalania, poza tym sam proces zachodzi szybciej, płomień jest stabilny i czysty. Sprzedawany jest w butlach koloru niebieskiego. Podawany jest przez reduktor tlenowy, który obniża i normuje jego ciśnienie. Ze względu na bezpieczeństwo używa się bezpieczniki tlenowe, zarówno przy reduktorze jak i przy palnikach.

Propan.
Otrzymywany jest w procesie przetwarzania gazu ziemnego. Jest gazem bezbarwnym łatwopalnym a czystość spalania propanu czyni go doskonałym dla wielu zastosowań w przemyśle. W technice używa się go do lutowania miękkiego i twardego, grzania, opalania. Wysoką wartość energetyczną otrzymuje się w połączeniu z tlenem. Propan jest stosunkowo tani i dostępny, przez co ma szerokie zastosowanie w przemyśle warsztatowym.
Przechowywany jest w butlach o różnej objętości, jak również w kartuszach jednorazowych.

Wodór.
Niesłychanie szeroko wykorzystywany w różnych gałęziach przemysłu:
Zmieszany z tlenem spala się w temperaturze 2850 st i jako taka mieszanina jest wykorzystywany do cięcia stali pod wodą.
W postaci płynnej stanowi paliwo do silników rakietowych.
Stosowany jako składnik mieszanek gazów osłonowych w spawaniu stali nierdzewnych, austenitycznych metodą TIG.

Odrębną grupę gazów i ich mieszanek stanowią gazy osłonowe. Mają one spory wpływ na jakość i efektywność procesów spawalniczych. Przede wszystkim chronią łuk i spoinę przed wpływem gazów z atmosfery. Oprócz tego modyfikują ją i przez to mają korzystny wpływ na właściwości spoiny i otoczenia spoiny, takie jak wytrzymałość, odporność na korozję, redukcję odprysków, szerokość i głębokość wtopu i na obciążenia dynamiczne. Na rynku istnieje wiele mieszanek, proces ich doboru, specjalizacja i zastosowania stają się coraz większe.

Dwutlenek węgla.
Wyjątkowe właściwości dwutlenku węgla, na przykład jego obojętność w reakcjach oraz duża rozpuszczalność w wodzie,sprawia że jest on wykorzystywany w chyba wszystkich gałęziach przemysłu. Nie będę wyszczególniał wszystkich tylko te najciekawsze: w ogrodnictwie i akwarystyce w dokarmianiu roślin, w gaśnicach, w leczeniu kriogenicznym, uzdatnianiu wody pitnej, w przemyśle spożywczym do produkcji bąbelków:) w napojach i do zasilania markerów paintballowych.
W spawalnictwie sam dwutlenek węgla jest już coraz mniej używany. w technice MIG bardziej skuteczna jest jego mieszanka z argonem. Nie przynosi ona tak niechcianych odprysków i dymu, a połączenia mają o wiele lepsze właściwości wytrzymałościowe. Stosowany jest jako gaz osłonowy do spawania półautomatami stali konstrukcyjnej metodą MIG. Przechowywany w butlach pod ciśnieniem o różnych objętościach. Butla z gazem co2 jest najczęściej koloru szarego z zielonym paskiem.

Argon jest bezbarwnym i pozbawionym zapachu gazem, cięższym od powietrza. Najistotniejszą właściwością chemiczną argonu jest jego obojętność chemiczna. Dlatego jest niemal idealnym gazem osłonowym podczas spawania. Wykorzystywany w technice spawania łukowego TIG i MIG. Ponieważ jest gazem obojętnym to stosuje się go do spawania materiałów szczególnie narażonych na utlenianie w wysokich temperaturach, takich jak aluminium, stal kwasoodporna, wysokostopowa.

Mieszanki argonu i dwutlenku węgla. Cieszący się popularnością Argomix to mieszanka osłonowa utleniająca do spawania metodą MAG stali konstrukcyjnych. Gwarantuje redukcję odprysków, dobre parametry mechaniczne spawu i skuteczne chłodzenie uchwytu. Przechowywany w butlach o podobnych parametrach co dwutlenek węgla. Również reduktory Co2 i MIX stosowane są zamiennie.

Hel.
Pocieszny gaz, miałem ostatnio okazję łyknąć go na weselu i mówić cienkim głosem, to tak na marginesie.
Gaz ten jest używany w wielu dziedzinach przemysłu. W spawalnictwie używany jako mieszanina z argonem, tlenem, azotem i dwutlenkiem węgla. Mieszanki te w zależności od składu stosuje się jako gaz osłonowy do spawania metodą TIG lub MIG stali niestopowych i niskostopowych, stali wysokostopowych, aluminium oraz metali nieżelaznych. W porównaniu z argonem daje łuk o większej mocy i powoduje głębsze wtopienie, a spaw jest szerszy. Wadą Helu jest trudne zajarzenie łuku.

Azot zarówno w czystej postaci jak i w mieszankach stosowany do spawania TIG stali duplex i austenitycznych, które to stale mają podwyższoną zawartości azotu. W procesie spawania nie dochodzi do niedoboru tego pierwiastka i zarówno spoina jak i grań zachowuje wysoką odporność na korozję i wysokie właściwości mechaniczne.

To tyle pozdrawiam

   
© ALLROUNDER